Earthquake Energy Scaling Workshop

July 24, 2003 Wente Vinyards Livermore, California

Sponsored by IGPP/LLNL Rick Ryerson, Geosciences Center Head

Hosted by Bill Walter and Kevin Mayeda Lab-Wide LDRD Project

Intro

- Welcome and Acknowledgements
- Logistics and Agenda
 - Agenda and dinner sign-up sheet
- Planned Format: talks with questions and comments/viewgraphs
- Projectors
- Issues, Poll Results and Questions to be Addressed

Meetings Focused On Energy Scaling

- Fall 2002 Special Session
- Summer 2003 Earthquake Energy Scaling Workshop
- Summer 2004? Chapman Conference

Basic Seismic Measures of Earthquake Scaling

Static - Mo

 $M_o = \square$ (avg. slip) (fault area)

Very accurate quantitative seismic measures

Dynamic - Es

 $E_s = \square$ (avg. slip) (fault area)

Seismic measures require many corrections

Apparent Stress ~ Dynamic/Static $\Box = \Box E_s / M_o$

Main uncertainties from seismic energy estimates

Comparing spectra shows the difficulty in distinguishing between the two cases at small Mw and differences in extrapolation at large Mw

- Differences for small events occur at high frequencies where attenuation corrections are large.
- Large events have big differences, but there are fewer of these well-recorded at local and regional distances. Teleseismic measures require significant corrections. □

Workshop Poll Results Show a Split

If forced to chose, do you believe that the available evidence shows:

- 1) Earthquake Es/Mo scaling is generally constant or increasing over Mw 1 to 8?
- 2) Is your confidence level high, medium or low?

Apparent Stress Scaling Has Implications for Earthquake Physics

Consider a simple fault model of Orowan (1960) where the available elastic energy is partitioned into seismic and non-seismic portions depending on the efficiency:

 $E_e = []$ (avg. slip) (area) Elastic Energy $E_f = []$ (avg. slip) (area) Frictional Energy $E_s = []$ (avg. slip) (area) Seismic Energy

$$E_s = \Box E_e = E_e - E_f$$
 (\Box is the efficiency)
 $\Box = \Box \Box = \Box \Box / 2$ (Apparent stress, Wyss, 1970); Tie between \Box and $\Box\Box$ is model dependent!

Implications:

- 1) absolute stress values are not observed seismically
- 2) variable efficiency implies variable tectonic and/or frictional stress levels

Workshop Questions

- What is the scaling behavior of earthquake seismic energy with moment? (e.g. constant apparent stress (E_s/M_o), increasing, other?)
- What earthquake physics is implied by these apparent stress models?
- What is the level of variability of seismic energy for a given moment and where does this variability come from?
- Can we reach consensus on seismic energy from teleseismic, regional, borehole, and mine estimates?